Syntheses and 1,3-Dipolar Cycloaddition Reactions of Benz[de]iso-quinolinium-1-ides

By Masazumi Ikeda,* Yasuyoshi Miki, Sumiko Kaita, Yoshinori Nishikawa, and Yasumitsu Tamura, Faculty of Pharmaceutical Sciences, Osaka University, 133-1, Yamada-kami, Suita, Osaka, Japan
Benz[de]isoquinolinium-1-ides prepared in situ by treatment of 2-substituted 2,3-dihydro-1 H -benz[de] isoquinoline N-oxides with acetic anhydride, reacted with dimethyl acetylenedicarboxylate and with maleimides to give $1: 1$ cycloadducts. The stereochemistry of the maleimide cycloadducts was determined by n.m.r. spectroscopy. Exclusive or predominant formation of the endo-adducts is in sharp contrast with the case of naphtho[1,8-cd]thiopyran, which reacts with maleimides to give exclusively or predominantly exo-adducts. The adducts were converted into cyclohepta[de]naphthalene derivatives.

Cycloaddition reactions of cyclic 1,3 -dipoles with alkynes and alkenes are now recognised to provide useful synthetic routes to a variety of two-ring heterocycles. For instance, 1 -methyl-3-oxidopyridinium undergoes a 1,3-dipolar cycloaddition with acrylonitrile to give a $1: 1$ cycloadduct which can be converted into tropone derivatives. ${ }^{1}$ We have now prepared benz[de]isoquinolinium1 -ides (I) by dehydration of 2 -substituted 2,3 -dihydro$1 H$-benz $[d e]$ isoquinoline N-oxides (III), and examined their 1,3 -dipolar reactivity.
The N-oxides (IIIa and b) were synthesised by oxidation of 2,3 -dihydro- $1 H$-benz[de]isoquinolines (IIa and b) ${ }^{2}$ with 30% hydrogen peroxide in 58 and 65% yields, respectively. When compound (IIIa) was treated with acetic anhydride and triethylamine ${ }^{3}$ in the presence of dimethyl acetylenedicarboxylate at $-10^{\circ} \mathrm{C}$, a crystalline 1:1 adduct (IV) was obtained in 83% yield. The i.r. spectrum showed a carbonyl band at $1715 \mathrm{~cm}^{-1}$, and the n.m.r. spectrum a methoxy-singlet at $\delta 3.86(6 \mathrm{H})$, an N-methyl singlet at $\delta 2.55(3 \mathrm{H})$, and a singlet due to bridgehead protons at $\delta 4.96(2 \mathrm{H})$.

The similar reaction of (IIIa) with N-methyl- and N-phenyl-maleimides gave exclusively endo-adducts, (V) and (VI), in 80 and 59% yields, respectively. Compound (IIIb) also reacted with maleimides but more slowly than (IIIa); with N-phenylmaleimide only the endo-adduct (VII) was obtained, in 61% yield, and with N-methyl-
${ }^{1}$ N. Dennis, A. R. Katritzky, and Y. Takeuchi, Angew. Chem. Internat. Edn., 1976, 15, 1.
maleimide the exo-adduct (IX) was obtained in 9% yield along with the endo-adduct (VIII) (52% yield).

The stereochemistry of these cycloadducts was assigned by n.m.r. spectroscopy (Table). The imide N-methyl signal of the endo-adducts (V)-(VIII) appears ca. 0.8 p.p.m. to higher field than that of N-methylsuccinimide ($\delta 2.98$) or that of the exo-adduct (IX) because the N methyl group is situated almost directly over the naphthalene ring in the endo-adducts. The signal of H_{b} of the exo-adduct (IX) appears ca. $0.66-0.89$ p.p.m. to higher field than that of endo-adducts (V)-(VIII) owing to the anisotropic effect of the naphthalene ring. Both H_{a} and H_{b} in the exo-adduct (IX) resonate as sharp singlets, whereas the endo-adducts (V)-(VIII) give as $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ multiplets; molecular models indicate that the torsion angle between H_{a} and H_{b} in (IX) is about 90°, whereas that in (V)-(VIII) is about 30°.

These reactions are considered to involve ylide intermediates (I) which form 1:1 cycloadducts with the dipolarophiles. Involvement of the intermediates (I) was in fact suggested by the development of a green colour when the reaction was carried out at $-10^{\circ} \mathrm{C}$ in the absence of dipolarophile, although attempts to isolate them were unsuccessful owing to their sensitivity to heat.

The stereochemistry of the cycloadditions of the ylides (I) is in sharp contrast to the case of naphtho $[1,8-c d]-$

[^0]thiopyran analogue (XI), which has been reported to give solely the exo-adduct (XII) with N-phenylmaleimide. ${ }^{4}$ We have not only confirmed this result but also obtained both exo- and endo-adducts in a reaction with
chemistry was assigned by n.m.r. spectroscopy (Table), as in the cases of (VIII) and (IX).

We cannot explain the differences in stereochemical results from the systems (I) and (XI) at this time in

(I) $a ; R=M e$
$b ; R=P h$

(IV)

(V) $R^{1}=R^{2}=M e$
(VI) $R^{1}=M e, R^{2}=P h$
(VII) $R^{1}=R^{2}=P h$
(VIII) $R^{1}=P h, R^{2}=\mathrm{Me}$

(III) $a ; R=M e$
b; $R=P h$

(IX)

(XII) $\mathrm{R}=\mathrm{Ph}$
(XIII) $\mathrm{R}=\mathrm{Me}$

(XIV)

(XV) $a ; R=M e$
b: $R=P h$

(XVI) $a ; R=M e$ b: $R=P h$
N-methylmaleimide. Refluxing the naphthothiopyran S-oxide (X) in acetic anhydride in the presence of N methylmaleimide gave exo- (XIII) and endo-adducts (XIV) in 52 and 13% yields, respectively. Both were stable under the reaction conditions and unchanged after refluxing in acetic anhydride for 1 h . Their stereo-
terms of conventional electronic and steric considerations.

The cycloadducts (V) and (VI) were converted into

[^1]cyclohepta[de]naphthalene derivatives (XVI) by treatment with methyl iodide in ethyl acetate to give the quaternary salts (XVa and b), followed by methanolic potassium hydroxide. Structures were assigned on the basis of the elemental analyses and spectral data ${ }^{5}$ (see Experimental section).

EXPERIMENTAL

N.m.r. spectra were determined with a Hitachi R-20A spectrometer (tetramethylsilane as internal standard). I.r. spectra were recorded with a Hitachi EPI-G2 spectrophotometer, and u.v. spectra with a Hitachi 124 spectrophotometer. Mass spectra were obtained with a Hitachi
$133-134^{\circ}$ (from ethanol) (Found: C, 70.6; H, 5.3; N, 4.3. $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{4}$ requires $\left.\mathrm{C}, 70.6 ; \mathrm{H}, 5.3 ; \mathrm{N}, 4.3 \%\right)$; $\nu_{\text {max }}$. $\left(\mathrm{CHCl}_{3}\right) 1715 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; $\delta\left(\mathrm{CDCl}_{3}\right) 2.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N} \cdot \mathrm{CH}_{3}\right)$, $3.86\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CO}_{2} \mathrm{Me}\right), 4.96(2 \mathrm{H}, \mathrm{s}$, bridgehead), and $7.3-7.9$ ($6 \mathrm{H}, \mathrm{m}$, aromatic).
endo-7,8,9,10-Tetrahydro-11-methyl-7,10-iminocyclohepta-
[de]naphthalene-8,9-N-methyldicarboximide (V).-A similar procedure to that for the preparation of (IV) gave the adduct (V) [from (IIIa) (100 mg) and N-methylmaleimide (60 mg)] ($117 \mathrm{mg}, 80 \%$), m.p. 217-219 ${ }^{\circ}$ (from ethanol), as cubes (Found: C, 73.9; H, 5.5; N, 9.4. $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 73.95 ; \mathrm{H}, 5.5 ; \mathrm{N}, 9.6 \%)$; $\nu_{\max }\left(\mathrm{CHCl}_{3}\right) \mathrm{l} 770$ and 1695 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{O})$.
N.m.r. spectra of cycloadducts (δ values)

	H_{a}	H_{b}	NMe	$\mathrm{CO} \cdot \mathrm{NMe} \cdot \mathrm{CO}$	Aromatic
(V)	$4.5-4.7(1 \mathrm{H}, \mathrm{m})$	3.9-4.1 ($1 \mathrm{H}, \mathrm{m}$)	2.09 or 2.23	2.23 or 2.09	7.15-7.85 ($6 \mathrm{H}, \mathrm{m}$)
(VI)	4.6-4.8 (1 H, m)	$4.05-4.25(1 \mathrm{H}, \mathrm{m})$	2.29 (3 H, s)		$5.9-6.15(2 \mathrm{H}, \mathrm{m})$
					7.0-7.9 ($9 \mathrm{H}, \mathrm{m}$)
(VII)	5.55-5.75 ($1 \mathrm{H}, \mathrm{m}$)	4.2-4.4 (1 H, m)			$5.9-6.2(2 \mathrm{H}, \mathrm{~m})$
(VIII)	5.45-5.7 (1 H, m)	4.0-4.25 ($1 \mathrm{H}, \mathrm{m}$)		2.14 ($3 \mathrm{H}, \mathrm{s}$)	$6.65-7.9(15 \mathrm{H}, \mathrm{m})$ $6.6-7.8(11 \mathrm{H}, \mathrm{m})$
(IX)	5.49 (1 H, s)	3.41 (1 H, s)		3.02 ($3 \mathrm{H}, \mathrm{s}$)	$6.55-7.8(11 \mathrm{H}, \mathrm{m})$
(XIII)	4.97 ($1 \mathrm{H}, \mathrm{s}$)	3.56 (1 H, s)		$3.04(3 \mathrm{H}, \mathrm{s})$	$7.25-7.9(6 \mathrm{H}, \mathrm{m})$
(XIV)	$4.9-5.1$ ($1 \mathrm{H}, \mathrm{m}$)	4.1-4.3 ($1 \mathrm{H}, \mathrm{m}$)		2.18 ($3 \mathrm{H}, \mathrm{s}$)	7.25-7.85 ($6 \mathrm{H}, \mathrm{m}$)

RMU-6D instrument with a direct inlet system operating at 70 eV . Preparative layer chromatography (p.l.c.) was carried out on Merck alumina PF_{254}.

2,3-Dihydro-2-methyl-1H-benz[de]isoquinoline $\quad \mathrm{N}$-Oxide (IIIa).- To a solution of the benzisoquinoline (IIa) ${ }^{2}(2.86 \mathrm{~g})$ in methanol (20 ml) was added 30% hydrogen peroxide $(7.0 \mathrm{~g})$, and the mixture was kept at room temperature for 1 day. The excess of hydrogen peroxide was decomposed with platinum oxide, methanol was removed in vacuo, and the residue was diluted with saturated sodium chloride solution and extracted with chloroform. The extract was washed with saturated sodium chloride solution, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give plates ($1.77 \mathrm{~g}, 57 \%$) which were recrystallised from ethyl acetate; m.p. 170-172 (Found: $\mathrm{C}, 72.1 ; \mathrm{H}, 7.0 ; \mathrm{N}, 6.5 . \quad \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NOH}_{2} \mathrm{O}$ requires $\mathrm{C}, 71.9$; $\mathrm{H}, 7.0 ; \mathrm{N}, 6.45 \%)$; $\delta\left(\mathrm{CDCl}_{3}\right) 3.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N} \cdot \mathrm{CH}_{3}\right), 4.85$ $(4 \mathrm{H}, \mathrm{ABq}, J 12 \mathrm{~Hz}$, benzylic), and $7.2-7.9(6 \mathrm{H}, \mathrm{m}$, aromatic).

2,3-Dihydro-2-phenyl-1H-benz[de]isoquinoline \quad N-Oxide (IIIb).-To a solution of the benzisoquinoline (IIb) ${ }^{6}(700 \mathrm{mg})$ in acetic acid (10 ml) was added 30% hydrogen peroxide $(1 \mathrm{ml})$. The mixture was kept at room temperature for 1 day, then poured into water (10 ml) and extracted with chloroform. The extract was washed with saturated aqueous sodium hydrogen carbonate, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give crystals ($530 \mathrm{mg}, 68 \%$), m.p. $150-152^{\circ}$ (from methanol-ether) (Found: C, 79.7; H, 6.2; N, 5.0. $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}, 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 80.0 ; \mathrm{H}, 6.0 ; \mathrm{N}, 5.2 \%$); $\delta\left(\mathrm{CDCl}_{3}\right) 5.15(4 \mathrm{H}, \mathrm{ABq}, J 12 \mathrm{~Hz})$ and $7.2-8.0(11 \mathrm{H}, \mathrm{m}$, aromatic).

Dimethyl 7,10-Dihydro-11-methyl-7,10-iminocyclohepta[de] naphthalene-8,9-dicarboxylate (IV).-To a solution of dimethyl acetylenedicarboxylate (100 mg) and triethylamine (100 mg) in acetic anhydride (5 ml) was added in portions the N-oxide (IIIa) (105 mg) at $-10{ }^{\circ} \mathrm{C}$. The mixture was stirred at $-10{ }^{\circ} \mathrm{C}$ for 30 min , then acetic anhydride was removed in vacuo. The residue was diluted with water and extracted with chloroform. The extract was dried (MgSO_{4}) and concentrated. The residue was submitted to p.l.c. (chloroform) to give the adduct (IV) ($137 \mathrm{mg}, 83 \%$), m.p.
endo-7,8,9,10-Tetrahydro-11-methyl-7,10-iminocyclohepta-[de]naphthalene-8,9-N-phenyldicarboximide (VI).-By a similar procedure the adduct (VI) ($105 \mathrm{mg}, 59 \%$) was obtained [from (IIIa) (100 mg) and N-phenylmaleimide (84 mg)], m.p. 176-178 ${ }^{\circ}$ (from ethanol) as prisms (Found: C, 77.9; H, 5.2 ; $\mathrm{N}, 8.0 . \quad \mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 77.95$; $\mathrm{H}, 5.1$; $\mathrm{N}, 7.9 \%)$; $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1770$ and $1710 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$.
endo-7,8,9,10-Tetrahydro-11-phenyl-7,10-iminocyclohepta-
[de]naphthalene-8,9-N-phenyldicarboximide (VII).-To a solution of N-phenylmaleimide (50 mg) and triethylamine (50 mg) in acetic anhydride (3 ml) was added in portions the N-oxide (IIIb) (65 mg) at $-10{ }^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 30 min and kept in a refrigerator for 5 days. Work-up as described for (IV) gave the adduct (VII) ($67 \mathrm{mg}, 61 \%$), m.p. $260-262^{\circ}$ [from benzene-light petroleum (b.p. $60-80^{\circ} \mathrm{C}$)] as plates (Found: $\mathrm{C}, 80.7 ; \mathrm{H}, 4.9 ; \mathrm{N}, 6.5 . \quad \mathrm{C}_{28} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.7$; $\mathrm{H}, 4.8 ; \mathrm{N}, 6.7 \%)$; $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1775$ and $1710 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$.
endo- and exo-7,8,9,10-Tetrahydro-11-phenyl-7,10-imino-cyclohepta[de]naphthalene-8,9-N-methyldicarboximides
(VIII) and (IX).-By a procedure similar to that for the preparation of (VII), a mixture consisting of two products was obtained, which was submitted to p.l.c. (benzene) to give the adducts (VIII) ($192 \mathrm{mg}, 52 \%$) and (IX) ($32 \mathrm{mg}, 9 \%$). The endo-adduct (VIII) had m.p. 291-292 ${ }^{\circ}$ [from ethyl acetate-light petroleum (b.p. $60-80^{\circ} \mathrm{C}$)] (Found: C, 77.9; $\mathrm{H}, 5.1$; $\mathrm{N}, 7.9 . \quad \mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 77.95 ; \mathrm{H}, 5.1$; $\mathrm{N}, 7.9 \%)$; $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1775$ and $1695 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$. The exo-adduct (IX), afforded needles, m.p. 280-282 ${ }^{\circ}$ (from ethanol) (Found: C, 77.9; H, 5.1; N, 7.8\%); $\nu_{\max }\left(\mathrm{CHCl}_{3}\right)$ 1780 and $1700 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$.
exo- and endo-7,8,9,10-Tetrahydro-7,10-epithiocyclohepta-[de]naphthalene-8,9-N-methyldicarboximides (XIII) and (XIV).-A solution of the sulphoxide (X) ${ }^{4}(101 \mathrm{mg})$ and N-methylmaleimide (60 mg) in acetic anhydride (5 ml) was refluxed for 1 h . Acetic anhydride was evaporated off in vacuo and the residue was diluted with water and extracted

[^2]with chloroform. The dried extract was concentrated to yield two products which were separated by p.l.c. [benzenelight petroleum (b.p. $30-60^{\circ} \mathrm{C}$) ($1: 1$)] to give the adducts (XIII) ($70 \mathrm{mg}, 52 \%$) and (XIV) ($24 \mathrm{mg}, 17 \%$). The exoadduct (XIII) formed prisms, m.p. 187-189 ${ }^{\circ}$ [from benzenelight petroleum (b.p. $60-80^{\circ} \mathrm{C}$)] (Found: C, 69.4; H, 4.5; $\mathrm{N}, 4.6$. $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 69.1 ; \mathrm{H}, 4.4 ; \mathrm{N}, 4.7 \%$); $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1780$ and $1695 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$. The endo-adduct (XIV) gave pale yellow prisms, m.p. 235- 236° [from ace-tone-light petroleum (b.p. $60-80^{\circ} \mathrm{C}$)] (Found: C, 69.3; $\mathrm{H}, 4.5 ; \mathrm{N}, 4.7 \%)$; $\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 1770$ and $1695 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$.

Quaternisation of the Adducts (V) and (VI).-A solution of the adduct (V) (100 mg) and methyl iodide (1 ml) in ethyl acetate was kept at room temperature for 1 day. The precipitate was collected and recrystallised from methanol to give the methiodide (XVa) ($\mathbf{1 2 6} \mathrm{mg}, \mathbf{8 3} \%$), m.p. $248-250^{\circ}$ (decomp.) (Found: C, 50.7; H, 4.3; N, 5.8. $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{IN}_{2} \mathrm{O}_{2}$, $\mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 50.5 ; \mathrm{H}, 4.6 ; \mathrm{N}, 6.2 \%$). Similarly the methiodide (XVb) was obtained from (VI) (150 mg) and an excess of methyl iodide (2 ml) in 85% yield (178 mg) as needles, m.p. 261-262 (decomp.) (from methanol) (Found: C, $57.9 ; \mathrm{H}, 4.3 ; \mathrm{N}, 5.6 . \mathrm{C}_{24} \mathrm{H}_{21} \mathrm{IN}_{2} \mathrm{O}_{2}$ requires C , $58.0 ; \mathrm{H}, 4.3$; N, 5.6%).

Cyclohepta[de]naphthalene-8,9-N-methyldicarboximide (XVIa).-A solution of the methiodide (XVa) (250 mg) in
methanolic 5% potassium hydroxide (20 ml) was refluxed for 30 h . The precipitated red crystals were collected and recrystallised from benzene to give the imide (XVIa) (140 $\mathrm{mg}, \mathbf{9 3} \%$) as red needles, m.p. 268-269 ${ }^{\circ}$ (Found: C, 78.1; $\mathrm{H}, 4.4 ; \mathrm{N}, 5.5$. $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{NO}_{2}$ requires $\mathrm{C}, 78.15 ; \mathrm{H}, 4.2$; N , $5.4 \%)$; $\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 1745$ and $1700 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; $\lambda_{\text {max }}$. (EtOH) $249(\log \varepsilon 3.81), 312$ sh (2.94), 316sh (2.92), 336 (2.91), 343sh (2.86), 357sh (3.04), 373 (3.18), 392 (3.11), and 412sh $\mathrm{nm}(2.66) ; \delta\left(\mathrm{CDCl}_{3}\right) 3.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N} \cdot \mathrm{CH}_{3}\right), 6.95(2 \mathrm{H}, \mathrm{s})$, and $7.0-7.5$ ($6 \mathrm{H}, \mathrm{m}$).
Cyclohepta[de]naphthalene-8,9-N-phenyldicarboximide (XVIb).-Compound (XVb) (50 mg) was dissolved in methanolic 5% potassium hydroxide (5 ml) with slight warming on a water-bath and the resulting solution was kept at room temperature for 1 day. The precipitated red crystals were collected and recrystallised from benzene to give red needles (XVIb) ($24 \mathrm{mg}, 74 \%$), m.p. $>300^{\circ}$ (Found: $\mathrm{C}, 81.65 ; \mathrm{H}, 4.1 ; \mathrm{N}, 4.3$. $\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{NO}_{2}$ requires $\mathrm{C}, 81.7$; $\mathrm{H}, 4.05 ; \mathrm{N}, 4.3 \%)$; $\nu_{\max }\left(\mathrm{CHCl}_{3}\right) 1750$ and $1700 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{O}) ; \lambda_{\max }\left(\mathrm{CHCl}_{3}\right) 253(\log \varepsilon 4.75), 260(4.75), 300 \operatorname{sh}(4.15)$, 312 (4.18), $320 \mathrm{sh}(4.15), 335$ (4.07), 340sh (4.05), 362 (4.01), 379 (4.15), 398 (4.11), 416 (3.73), 469 (2.97), and 503 nm (2.98) ; $\delta\left(\mathrm{CDCl}_{3}\right) 6.9-7.8(\mathrm{~m})$.

[^0]: ${ }^{2}$ A. I. Tochilkin, S. M. Feigina, V. Z. Gorkin, and G. V. Polyakova, Khim.-Farm. Zhur., 1969, 3, 30.
 ${ }_{3}$ R. Kreher and J. Seubert, Angew. Chem., 1964, 76, 682.

[^1]: ${ }^{4}$ (a) M. P. Cava, N. M. Pollack, and D. A. Repella, J. Amer. Chem. Soc., 1967, 89, 3640; (b) R. H. Schlessinger and I. S. Ponticello, ibid., p. 3641.

[^2]: ${ }^{5}$ J. E. Shields, D. Gavrilovic, J. Kopecky, W. Hartmann, and H.-G. Heine, J. Org. Chem., 1974, 39, 515.
 ${ }^{6}$ E. Höft, A. Rieche, and H. Schultze, Annalen, 1966, 697, 181.

